Gaussian Mixture Models
(GMM)
and
ML Estimation Examples



Mean and Variance of Gaussian

e Consider the Gaussian PDF:

Given the observations (sample) X1, X,

Form the log-likelihood function
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Take the derivatives wrt u and o and set it to zero



Solution

 Sample mean and variance:
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Solving these equations will give us the MLE for y and o:
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Gaussian Mixture Model

* GMM K
Pr(x) = mN(x|uk, Zk) where
k=1

X is multidimensional.
Ref: https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/clustering/slides.pdf



Can we use the ML estimation method to estimate
the unknown parameters, Uy, oy, Ty ?

* |t is not easy:

- Loss function is the negative log likelihood

—log Pr(x|m, u,X) = Zlog{ZwkN X |k, k) }

+ Why is this function difficult to optimize?

 Notice that the sum over the components appears inside
the log, thus coupling all the parameters.

However, it is possible to obtain an iterative solution!



We can estimate the parameters using iterative
Expectation-Maximization (EM) algorithm

* Given the observations x;, i=1,2,...,n

- Each x; is associated with a latent variable
zi = (Zi1,- -, Zik).
- Given the complete data (x,z) = (x;,z;),i =1,...,n
- We can estimate the parameters by maximizing the
complete data log likelihood.
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* Notice that the 7, and (ux, 2x) decouple. Trivial
closed-form solution exists.

The latent variable parameter z; represents the contribution of k-th Gaussian to x;
Take the derivative of the log-likelihood wrt p,, 0y, T and set it to zero to get equations to be used in EM algorithm



Iterate for k=1,2,...

* Initialize with u,, 0,1, 7,
* Update equations at the k-th iteration:

- E-step: Given parameters, compute
TN (Xi| ks k)
Skt TN (Xl ks T
- M-step: Maximize the expected complete log likelihood
n K
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By updating the parameters
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- lterate till likelihood converges.
- Converges to local optimum of the log likelihood.

It may not converge to the global optimum!



Example

GMM example

— Training set: n = 900 examples from a uniform pdf inside an annulus
— Model: GMM with € = 30 Gaussian components
— Training procedure

e Gaussians centers initialized by choosing 30 arbitrary training examples

e Covariance matrices initialized to be diagonal, with large variance
compared to that of the training data

* To avoid singularities, at every iteration the covariance matrices computed
with EM were regularized with a small multiple of the identity matrix

 Components whose mixing coefficients fell below a threshold are
removed



Observations: blue dots

Iteration O Iteration 25 Iteration 50
3 i 1.5 4
2 b 1 b
1+ B 05+ A
or B o B
-1 , -0.5 B
2 - -1+ -
3 - 1.5~ bl

—2:‘5 -2 -1.5 -1 -0.5 o] 0.5 1 1.5 2

Iteration 300
1.5~ - 1.5~ -
1r- o 1 -

J.e
0.5 i 0.5~ Ny B
o ’.:- 4 o '..:._. 4
K -.: - %

0.5 by ] 0.5[- T ,
A : A -1 B
451 i 1.5~ B

Tl ke S

o5 2.5 2 15 -1 -0.5 [¢] 0.5 1 1.5 2

Ellipses represent 2-D Gaussians



Vector quantization = K-means clustering

k-means clustering

— The k-means algorithm is a simple procedure that attempts to group a
collection of unlabeled examples X = {x; ... x,, } into one of C clusters
e k-means seeks to find compact clusters, measured as
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e It can be shown that k-means is a special case of the GMM-EM algorithm

— Procedure

1. Define the number of clusters
. Initialize clusters by
a) an arbitrary assignment of examples to clusters or
b) an arbitrary set of cluster centers (i.e., use some examples as centers)
. Compute the sample mean of each cluster
. Reassign each example to the cluster with the nearest mean
. If the classification of all samples has not changed, stop, else go to step 3
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You may initialize the GMM algorithm from K-means cluster centers !



Example
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Fig. 3. Comparison of distribution modeling: (a) Histogram of a single
cepstral coefficient from a 25 second utterance by a male speaker; (b) max-
imum likelihood unimodal Gaussian model; (c) GMM and its 10 underlying
component densities; (d) histogram of the data assigned to the VQ centroid
locations of a 10-element codebook.




Speaker Identification

* Feature extractions from data using mel-cepstrum

\ PRE-EMPHASIS

s,[n] 2
e T e B e |4 '

Pon0oood, cosme |z %, - %,
o : TRANSFORM
MEL-SCALE FILTERBANK

Fig. 1. Mel-scale cepstral feature analysis.

* Extract feature vectors for each speaker (e.g., 90 sec long data)
* Frame length 10ms



Speaker model GMM

A Gaussian mixture density is a weighted sum of A

component densities, as depicted In Fig. 2 and given by the
equation

N
(| A) = E pib; () @
z=1

where & is a D-dimensional random vector, b; (:1:), =
l,..., M, are the component densities and p;,7 = 1, ..., M,
D-

are the mixture weights. Each component dens1ty is a
variate Gaussian function of the form
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with mean vector ji; and covariance matrlx 33;. The mixture
weights satisfy the constraint that Zz_l pi = 1.

\Lambda represents a person (speaker)



GMM Model

—
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Fig. 2. Depiction of an AM component Gaussian mixture density. A Gaussian

mixture density is a weighted sum of Gaussian densities, where p;,?t = 1,
..., M, are the mixture weights and b;(),z =1,..., M, are the component
Gaussians.

Mixture weights \sum_i p_i =1

Train the model from observations using the iterative algorithm for each speaker



How do we decide?

P(C 1) >

P(\| gm)

She is the person!



Speaker identification problem solution

For speaker identification, a group of S speakers S =
{1, 2,...,S} is represented by GMM’s A1, A2,---.,As. The
objective is to find the speaker model which has the maximum
a posteriori probability for a given observation sequence.

Formally,
. _ P(X | Ax) Pr(Ax)
S = arg 115111?%(5 Pr(Ax | X) = arg A, P X
&)
where the second equation is due to Bayes’ rule. Assuming
equally likely speakers (i.e., Pr(Ax) = 1/5) and noting that

p(X) is the same for all speaker models, the classification
rule simplifies to

~

S = arg 1%‘,52‘510()( | Ax)- (10)

Using logarithms and the independence between observations,
the speaker identification system computes

~

xT
S = arg max_ tE_l, log p(Fe | Ax) (11)

in which p(F£: | Ax) is given in (1).



Speaker Identification result

16 speakers

TABLE 1
GMM IDENTIFICATION PERFORMANCE FOR DIFFERENT
AMOUNTS OF TRAINING DATA AND MODEL ORDERS

Amount of Model |{ Test Length
Training Speech Order 1 sec | 5 sec | 10 sec

30 sec 54.6 79.8 85.6
63.7 87.3 90.5
85.3 88.4




Exponential Distribution Example

Example 2: Suppose Xi, Xy, ---, X, are i.i.d. random variables with density function

f(z]|o) = 55 exp (—% , please find the maximum likelihood estimate of o.
Solution: The log-likelihood function is
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Let the derivative with respect to 6 be zero:
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and this gives us the MLE for o as
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You get a different estimate for the standard deviation
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