
Gaussian	Mixture	Models	
(GMM)
and

ML	Estimation	Examples



Mean	and	Variance	of	Gaussian

• Consider	the	Gaussian	PDF:

Given	the	observations	(sample)

Form	the		log-likelihood	function

Take	the	derivatives	wrt 𝜇	𝑎𝑛𝑑	𝜎	and	set	it	to	zero
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Let us look at the log likelihood function
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where C is a constant which does not depend on µ. It can be seen that the log likelihood
function is easier to maximize compared to the likelihood function.

Let the derivative of l(µ) with respect to µ be zero:
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and the solution gives us the MLE, which is µ̂ = 0.5. We remember that the method of
moment estimation is µ̂ = 5/12, which is diÆerent from MLE.

Example 2: Suppose X1, X2, · · · , X
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Example 3: Use the method of moment to estimate the parameters µ and æ for the normal
density
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based on a random sample X1, · · · , X
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.

Solution: In this example, we have two unknown parameters, µ and æ, therefore the pa-
rameter µ = (µ,æ) is a vector. We first write out the log likelihood function as
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Setting the partial derivative to be 0, we have
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Solving these equations will give us the MLE for µ and æ:
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This time the MLE is the same as the result of method of moment.

From these examples, we can see that the maximum likelihood result may or may not be the
same as the result of method of moment.

Example 4: The Pareto distribution has been used in economics as a model for a density
function with a slowly decaying tail:

f(x|x0, µ) = µx
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, x ∏ x0, µ > 1

Assume that x0 > 0 is given and that X1, X2, · · · , X
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is an i.i.d. sample. Find the MLE of
µ.
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Solution

• Sample	mean	and	variance:
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Gaussian	Mixture	Model
• GMM	

Gaussian Mixture Model
• Probabilistic story: Each cluster is associated with a

Gaussian distribution. To generate data, randomly choose
a cluster k with probability ⇡k and sample from its
distribution.

• Likelihood Pr(x ) =
KX

k=1

⇡kN (x |µk ,⌃k ) where

KX

k=1

⇡k = 1, 0  ⇡k  1.

:

Sriram Sankararaman Clustering

Gaussian Mixture Model
• Probabilistic story: Each cluster is associated with a

Gaussian distribution. To generate data, randomly choose
a cluster k with probability ⇡k and sample from its
distribution.
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KX
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:

Sriram Sankararaman Clustering

X is	multidimensional.	
Ref:	https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/clustering/slides.pdf



Can	we	use	the	ML	estimation	method	to	estimate	
the	unknown	parameters,	𝜇1, 𝜎1, 𝜋4 ?
• It is	not	easy:

However,	it	is	possible to obtain an	iterative solution!

Gaussian Mixture Model

• Loss function is the negative log likelihood

� log Pr(x |⇡, µ,⌃) = �
nX

i=1

log

(
KX

k=1

⇡kN (x |µk ,⌃k )

)

• Why is this function difficult to optimize?
• Notice that the sum over the components appears inside

the log, thus coupling all the parameters.

Sriram Sankararaman Clustering



We	can	estimate	the	parameters	using	iterative	
Expectation-Maximization	(EM)	algorithm

The	latent	variable	parameter	zik represents	the	contribution	 of	k-th Gaussian	to xi
Take	the	derivative	of	the	log-likelihood	 wrt 𝜇1,𝜎1,𝜋4 and	set	it	to	zero	to	get	equations	 to	be	used	in	EM	algorithm	 	

• Given the observations xi,	i=1,2,...,nGaussian Mixture Model
• Each xi is associated with a latent variable

zi = (zi1, . . . , ziK ).
• Given the complete data (x , z) = (xi , zi ), i = 1, . . . , n

• We can estimate the parameters by maximizing the
complete data log likelihood.

log Pr(x , z |⇡, µ,⌃) =
NX

i=1

KX

k=1

zik {log ⇡k + logN (xi |µk ,⌃k )}

• Notice that the ⇡k and (µk ,⌃k ) decouple. Trivial
closed-form solution exists.

• Need a procedure that would optimize the log likelihood by
working with the (easier) complete log likelihood.

• “Fill-in” the latent variables using current estimate of the
parameters.

• Adjust parameters based on the filled-in variables.

Sriram Sankararaman Clustering



Iterate	for	k=1,2,…

• Initialize	with	𝜇5, 𝜎5𝐼, 𝜋5
• Update	equations	at	the	k-th iteration:

It	may	not	converge	to	the	global	optimum!

The Expectation-Maximization (EM)
algorithm

• E-step: Given parameters, compute

rik
�
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⇡kN (xi |µk ,⌃k )
PK

k=1 ⇡kN (xi |µk ,⌃k )

• M-step: Maximize the expected complete log likelihood

E [log Pr(x , z |⇡, µ,⌃)] =
nX
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rik {log ⇡k + logN (xi |µk ,⌃k )}

To update the parameters
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P
i rik

n
, µk =

P
i rik xiP
i rik

,⌃k =

P
i rik (xi � µk )(xi � µk )T

P
i rik

• Iterate till likelihood converges.
• Converges to local optimum of the log likelihood.

Sriram Sankararaman Clustering

+1 +1 +1

By updating



Example

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 28 

• GMM example 
– Training set: 𝑛 = 900 examples from a uniform pdf inside an annulus 

– Model: GMM with 𝐶 = 30 Gaussian components 

– Training procedure 

• Gaussians centers initialized by choosing 30 arbitrary training examples 

• Covariance matrices initialized to be diagonal, with large variance  
compared to that of the training data 

• To avoid singularities, at every iteration the covariance matrices computed 
with EM were regularized with a small multiple of the identity matrix  

• Components whose mixing coefficients fell below a threshold are 
removed 

 

– Illustrative results are provided in the next slide 



Observations:	blue	dots
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Ellipses	represent	2-D	Gaussians



Vector	quantization	=	K-means	clustering

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 30 

• k-means clustering 
– The k-means algorithm is a simple procedure that attempts to group a 

collection of unlabeled examples 𝑋 = 𝑥1 …𝑥𝑛  into one of 𝐶 clusters 
• k-means seeks to find compact clusters, measured as 

𝐽𝑀𝑆𝐸 =  𝑥 − 𝜇𝑐 2
𝑥∈𝜔𝑐

𝐶

𝑐=1
; 𝜇𝑐 =

1
𝑛𝑐
 𝑥
𝑥∈𝜔𝑐

 

• It can be shown that k-means is a special case of the GMM-EM algorithm 

– Procedure 

1. Define the number of clusters 
2. Initialize clusters by 

a) an arbitrary assignment of examples to clusters or  
b) an arbitrary set of cluster centers (i.e., use some examples as centers) 

3. Compute the sample mean of each cluster 
4. Reassign each example to the cluster with the nearest mean 
5. If the classification of all samples has not changed, stop, else go to step 3 

You	may	initialize	the	GMM	algorithm	from	K-means	cluster	centers	!	



Example



Speaker	Identification

• Feature	extractions	from	data	using	mel-cepstrum

• Extract	feature	vectors	for	each	speaker	(e.g.,	90	sec	long	data)
• Frame	length	10ms



Speaker	model		GMM

\Lambda	represents	a	person	 (speaker)	



GMM	Model

Mixture	weights	\sum_i p_i =1	

Train	the	model	from	observations	using	the	iterative	algorithm	for	each	speaker



How	do	we	decide?

CSC401/2511 – Spring 2016 10

Classifying	speakers
• Similarly,	all	of	the	speech	produced	by	one	speaker will	cluster	
differently	in	MFCC	space	than	speech	from	another	speaker.
• We	can	∴ decide	if	a	given	observation	comes	from	one	
speaker	or	another.

Time,	3
0 1 … T

M
FC
C

1 …
2 …
3 …
… … … … …
42 …

Observation	matrix

P(		|						)	>

P(		|						)

She	is	the	person!



Speaker	identification	problem	solution



Speaker	Identification	result

16	speakers



Exponential	Distribution	Example
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Let us look at the log likelihood function
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where C is a constant which does not depend on µ. It can be seen that the log likelihood
function is easier to maximize compared to the likelihood function.

Let the derivative of l(µ) with respect to µ be zero:
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and the solution gives us the MLE, which is µ̂ = 0.5. We remember that the method of
moment estimation is µ̂ = 5/12, which is diÆerent from MLE.

Example 2: Suppose X1, X2, · · · , X
n

are i.i.d. random variables with density function
f(x|æ) = 1

2æ

exp
≥
° |x|

æ

¥
, please find the maximum likelihood estimate of æ.

Solution: The log-likelihood function is

l(æ) =
nX

i=1

"

° log 2° log æ ° |X
i

|
æ

#

Let the derivative with respect to µ be zero:

l

0(æ) =
nX

i=1

"

° 1

æ

+
|X

i

|
æ

2

#

= °n

æ

+

P
n

i=1 |X
i

|
æ

2
= 0

and this gives us the MLE for æ as
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Example 3: Use the method of moment to estimate the parameters µ and æ for the normal
density

f(x|µ,æ
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,

You	get	a	different	estimate	for	the	standard	deviation
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